Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Soft Computing Applications
Guest editors: Valentina Emilia Balas
Article type: Research Article
Authors: Naseer-u-Din, ; * | Basit, Abdul | Ullah, Ihsan | Noor, Waheed | Ahmed, Atiq | Sheikh, Naveed
Affiliations: University of Balochistan, Quetta, Pakistan
Correspondence: [*] Corresponding author. Naseer-u-Din, Department of Computer Science & IT, University of Balochistan, Quetta, Pakistan. Tel: +92-332-7967211; E-mail: chairpersomcs@gmail.com, drabasit@um.uob.edu.pk.
Abstract: Researchers used visual methods rigorously to improve brain tumor detection in MRI or CT scans, yet there remains a challenge to improve the detection accuracy. Further, the rise of deep learning methods improved tumor detection accuracy up to the mark. But again, many times, we face the challenges of having a bigger dataset and better computing power to achieve an improved and accurate trained model for every object classification problem. In this paper, we propose a deep learning framework single shot multi-box detector (SSD)-based model to detect tumors in the MRI scans. The proposed SSD model is the faster algorithm to detect the tumor even with the ability to detect the smallest spot in the low-resolution MRI scans. We additionally used a lightweight neural network architecture MobileNet v2 with SSD for faster and accurate object classification. The experimental results showed 98% accuracy with the proposed method after training with the smallest dataset of 250 MRI scans. We used the Kaggle database for training and testing the proposed model.
Keywords: Convolutional neural network (CNN), tumor detection, MobileNet model, segmentation, single shot detector (SSD), medical imaging
DOI: 10.3233/JIFS-219298
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 2, pp. 1985-1993, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl