Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Zhang, Jianfeia; b; * | Rong, Wengea; b | Chen, Dalic | Xiong, Zhanga; b
Affiliations: [a] State Key Laboratory of Software Development Environment, Beihang University, Beijing, China | [b] School of Computer Science and Engineering, Beihang University, Beijing, China | [c] Kuaishou Technology, Beijing, China
Correspondence: [*] Corresponding author. Jianfei Zhang. E-mail: zhangjf@buaa.edu.cn.
Abstract: The traditional end-to-end Neural Question Generation (NQG) models tend to generate generic and bland questions, as there are two obscure points: 1) the modifications of the answer in the context can be used as the clues to the answer mentioned in the question, while they are generally not unique and can be used independently for generating diverse questions; 2) the same question content can also be asked in diverse ways, which depends on personal preference in practice. The above-mentioned two points are indeed two variables to conduct question generation, but they are not annotated in the original dataset and are thus ignored by the traditional end-to-end models. In this paper we propose a framework that clarifies those two points through two sub-modules to better conduct question generation. We take experiments based on the GPT-2 model and the SQuAD dataset, and prove that our framework can improve the performance measured by similarity metrics, while it also provides appropriate alternatives for controllable diversity enhancement.
Keywords: Question generation, external information, controllable diversity
DOI: 10.3233/JIFS-219249
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4611-4622, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl