Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Kostiuk, Yevhena | Lukashchuk, Mykolab | Gelbukh, Alexanderb; * | Sidorov, Grigorib
Affiliations: [a] Taras Shevchenko National University of Kyiv, Kyiv, Ukraine | [b] Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, Mexico
Correspondence: [*] Corresponding author. Alexander Gelbukh, Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City, Mexico. E-mail: gelbukh@gelbukh.com.
Abstract: Probabilistic Bayesian methods are widely used in the machine learning domain. Variational Autoencoder (VAE) is a common architecture for solving the Language Modeling task in a self-supervised way. VAE consists of a concept of latent variables inside the model. Latent variables are described as a random variable that is fit by the data. Up to now, in the majority of cases, latent variables are considered normally distributed. The normal distribution is a well-known distribution that can be easily included in any pipeline. Moreover, the normal distribution is a good choice when the Central Limit Theorem (CLT) holds. It makes it effective when one is working with i.i.d. (independent and identically distributed) random variables. However, the conditions of CLT in Natural Language Processing are not easy to check. So, the choice of distribution family is unclear in the domain. This paper studies the priors selection impact of continuous distributions in the Low-Resource Language Modeling task with VAE. The experiment shows that there is a statistical difference between the different priors in the encoder-decoder architecture. We showed that family distribution hyperparameter is important in the Low-Resource Language Modeling task and should be considered for the model training.
Keywords: Bayesian model, low-resource language modeling, NLP, priors, RNN, VAE, Variational Autoencoder
DOI: 10.3233/JIFS-219243
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4541-4549, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl