Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Tandon, Kushagri; * | Chatterjee, Niladri
Affiliations: Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
Correspondence: [*] Corresponding author. Kushagri Tandon, Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India. E-mail: Kushagri.Tandon@maths.iitd.ac.in.
Abstract: Multi-label text classification aims at assigning more than one class to a given text document, which makes the task more ambiguous and challenging at the same time. The ambiguities come from the fact that often several labels in the prescribed label set are semantically close to each other, making clear demarcation between them difficult. As a consequence, any Machine Learning based approach for developing multi-label classification scheme needs to define its feature space by choosing features beyond linguistic or semi-linguistic features, so that the semantic closeness between the labels is also taken into account. The present work describes a scheme of feature extraction where the training document set and the prescribed label set are intertwined in a novel way to capture the ambiguity in a meaningful way. In particular, experiments were conducted using Topic Modeling and Fuzzy C-Means clustering which aim at measuring the underlying uncertainty using probability and membership based measures, respectively. Several Nonparametric hypothesis tests establish the effectiveness of the features obtained through Fuzzy C-Means clustering in multi-label classification. A new algorithm has been proposed for training the system for multi-label classification using the above set of features.
Keywords: Multi-label classification, clustering, fuzzy membership, topic modeling, document embeddings
DOI: 10.3233/JIFS-219232
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4425-4436, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl