Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Chatterjee, Niladria; b | Roy, Aayush Singhaa; * | Yadav, Nidhikab
Affiliations: [a] School of Information Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India | [b] Department of Mathematics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Correspondence: [*] Corresponding author. Aayush Singha Roy, School of Information Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi – 110016, India. E-mail: aayush.singha.roy@cse.iitd.ac.in.
Abstract: The present work proposes an application of Soft Rough Set and its span for unsupervised keyword extraction. In recent times Soft Rough Sets are being applied in various domains, though none of its applications are in the area of keyword extraction. On the other hand, the concept of Rough Set based span has been developed for improved efficiency in the domain of extractive text summarization. In this work we amalgamate these two techniques, called Soft Rough Set based Span (SRS), to provide an effective solution for keyword extraction from texts. The universe for Soft Rough Set is taken to be a collection of words from the input texts. SRS provides an ideal platform for identifying the set of keywords from the input text which cannot always be defined clearly and unambiguously. The proposed technique uses greedy algorithm for computing spanning sets. The experimental results suggest that extraction of keywords using the proposed scheme gives consistent results across different domains. Also, it has been found to be more efficient in comparison with several existing unsupervised techniques.
Keywords: Keyword extraction, Rough Set, Soft Rough Set, Rough Set based Span, natural language processing
DOI: 10.3233/JIFS-219228
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4379-4386, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl