Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Recent Advances in Language & Knowledge Engineering
Guest editors: David Pinto, Beatriz Beltrán and Vivek Singh
Article type: Research Article
Authors: Ruiz Alonso, Doriana; * | Zepeda Cortés, Claudiaa | Castillo Zacatelco, Hildaa | Carballido Carranza, José Luisa | García Cué, José Luisb
Affiliations: [a] Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla | [b] Colegio de Postgraduados en CienciasAgrícolas
Correspondence: [*] Corresponding author. Dorian Ruiz Alonso, Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla. E-mail: dorianr@gmail.com.
Abstract: This work deals with educational text mining, a field of natural language processing applied to education. The objective is to classify the feedback generated by teachers in online courses to the activities sent by students according to the model of Hattie and Timperley (2007), considering that feedback may be at the levels task, process, regulation, praise and other. Four multi-label classification methods of the data transformation approach - binary relevance, classification chains, power labelset and rakel-d - are compared with the base algorithms SVM, Random Forest, Logistic Regression and Naive Bayes. The methodology was applied to a case study in which 11013 feedbacks written in Spanish language from 121 online courses of the Law degree from a public university in Mexico were collected from the Blackboard learning manager system. The results show that the random forests algorithms and vector support machines will have the best performance when using the binary relevance transformation and classifier chains methods.
Keywords: Text mining, multi-label classification, educational data mining, online education
DOI: 10.3233/JIFS-219224
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 5, pp. 4337-4343, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl