Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Yongqiao; * | Ni, He
Affiliations: School of Finance, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
Correspondence: [*] Corresponding author: Yongqiao Wang, School of Finance, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China. E-mail: wangyq@zjsu.edu.cn.
Abstract: This paper studies nonparametric estimation of the discount curve, which should be decreasing and positive over the entire maturity domain. Very few papers explicitly impose these shape requirements for removing the possibility of obtaining a shape-violating estimation. No matter how small the approximating error is, a shape-violating discount curve can never be accepted by the financial industry. Since these shape requirements are continuously constrained and involve an infinite number of inequality constraints, it is hard to provide a necessary and sufficient implementation that is computationally tractable. Existing parametric and nonparametric methods fail to achieve universal flexibility and shape compliance simultaneously. This paper proposes a nonparametric method that approximates the discount curve with algebraic polynomials and ensures the discount function is decreasing and positive over the entire domain. This estimation problem can be reformulated equivalently as a semidefinite program that is convex and computationally tractable. The proposed method is the first one which not only has asymptotic universal fitting flexibility, but also fully complies with shape requirements. Experimental results on one artificial data, one US Gilt STRIPS data, and one US Treasury bonds data demonstrate its superiority over state-of-the-art methods in terms of both the compliance of shape requirements and out-of-sample fitting measures.
Keywords: Curve fitting, term structure of interest rates, shape restriction, nonparametric regression, function approximation
DOI: 10.3233/JIFS-213432
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4835-4847, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl