Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Lijuna | Duan, Lixiangb; c; *
Affiliations: [a] College of Mechanical and Transportation Engineering, China University of Petroleum (Beijing), Beijing, China | [b] Key Laboratory of Oil and Gas Safety and Emergency Technology, Ministry of Emergency Management, Beijing, China | [c] College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing, China
Correspondence: [*] Corresponding author. Lixiang Duan, College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing, China. E-mail: duanlx@cup.edu.cn.
Abstract: To address data distribution discrepancy across scenarios, deep transfer learning is used to help the target scenario complete the recognition task using similar scenario data. However, fault misrecognition or low diagnostic accuracy occurs due to the weak expression of the deep transfer model in cross-scenario application. The Convolutional Block Attention Module (CBAM) can independently learn the importance of each channel and space features, recalibrate the channel and space features, and improve image classification performance. This study introduces the CBAM module using the Residual Network (ResNet), and proposes a transfer learning model that combines the CBAM module with an improved ResNet, denoted as TL_CBAM_ResNet17. A miniature ResNet17 deep model is constructed based on the ResNet50 model. The location of the CBAM module embedded in the ResNet17 model is determined to strengthen model expression. For effective cross-scenario transfer and reduced data distribution discrepancy between source and target domains, a multi-kernel Maximum Mean Discrepancy (MK–MMD) layer is added in front of the classifier layer in the ResNet17 model to select data with common domain features. Considering a reciprocating compressor as the research object, cross-scenario datasets are produced by the vibration signals from the simulation test bench and simulation signals from the dynamic simulation model. Mutual transfer experiments are conducted using these datasets. The proposed method (TL_CBAM_ResNet17) demonstrates better classification performance than TCA, JDA, the TL_ResNet50 model, the TL_ResNet17 model, and the TL_ResNet17 model integrated with other attention mechanism module, and greatly improves the accuracy of fault diagnosis and generalization of the model in cross-scenario applications.
Keywords: Cross-scenario, transfer learning, reciprocating compressor, ResNet, CBAM, dynamic simulation
DOI: 10.3233/JIFS-213340
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 5929-5943, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl