Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tran, Van Quan; * | Nguyen, Linh Quy
Affiliations: University of Transport Technology, Hanoi, Vietnam
Correspondence: [*] Corresponding author. Van Quan Tran. University of Transport Technology, No. 54 Trieu Khuc Street, Hanoi, Vietnam. E-mail: quantv@utt.edu.vn
Abstract: The use of recycled glass in the concrete mix instead of natural coarse aggregates and supplemental cementitious material has several advantages, including the conservation of natural resources, the reduction of CO2 emissions, and cost savings. However, due to their qualities, the mechanical properties of concrete containing Ground Glass Particles (GGP) differ from those of natural aggregates concrete. As a result, assessing the compressive strength (CS) of concrete with GGP is crucial. Therefore, this paper proposes the hybrid Machine Learning (ML) model including the Gradient Boosting (GB) and Bayesian optimization (BO) algorithms for predicting the compressive strength of concrete containing GGP. The hybrid ML model is developed and validated based on the training dataset (70% of the data) and the test dataset (30% of the remaining data), respectively. The performance of hybrid ML model is evaluated by three criteria, such as the Pearson correlation coefficient (R), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The K-Fold Cross-Validation technique is also used to verify the reliability of the hybrid ML model). The best performance of the hybrid ML model is determined with the R = 0.9843, RMSE = 1.7256 (MPa), and MAE = 1.3154 (MPa) for training dataset and R = 0.9784, RMSE = 2.4338 (MPa) and MAE = 1.9618 (MPa) for testing dataset. Based on the best hybrid ML model, the sensitivity analysis including SHapley Additive exPlanation (SHAP) and Partial Dependence Plots (PDP) 2D are investigated to obtain an in-depth examination of each individual input variable on the predicted compressive strength of concrete contaning GGP. The sensitivity analysis shows that four factors, such as curing age, surface area, TiO2, and temperature have the most effect on the compressive strength of concrete containing GGP.
Keywords: Gradient boosting, bayesian optimization, compressive strength, concrete, machine learning, ground glass particles
DOI: 10.3233/JIFS-213298
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 5, pp. 5913-5927, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl