Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Davids, D. Minolaa; * | Christopher, C. Seldevb
Affiliations: [a] Department of Electronics and Communication Engineering, C.S.I. Institute of Technology, Anna University, Chennai | [b] Department of Computer Science and Engineering, St. Xavier’s Catholic College of Engineering, Anna University, Chennai
Correspondence: [*] Corresponding author. D. Minola Davids, Assistant Professor, Department of Electronics and Communication Engineering, C.S.I. Institute of Technology, Anna University, Chennai. E-mail: davidsminola@yahoo.com.
Abstract: The visual data attained from surveillance single-camera or multi-view camera networks is exponentially increasing every day. Identifying the important shots in the presented video which faithfully signify the original video is the major task in video summarization. For executing efficient video summarization of the surveillance systems, optimization algorithm like LFOB-COA is proposed in this paper. Data collection, pre-processing, deep feature extraction (FE), shot segmentation JSFCM, classification using Rectified Linear Unit activated BLSTM, and LFOB-COA are the proposed method’s five steps. Finally a post-processing step is utilized. For recognizing the proposed method’s effectiveness, the results are then contrasted with the existent methods.
Keywords: Video summarization, Levy Flight (LF) and opposition-based learning, Coyote Optimization Algorithm (LFOB-COA), Bi-directional Long Short-term Memory (BLSTM), Jaccard Similarity-centered Fuzzy C-Means (JSFCM)
DOI: 10.3233/JIFS-212800
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6235-6243, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl