Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kannan, Sridharan; *
Affiliations: Professor, Department of Computer Science and Engineering, J.K.K. Munirajah College of Technology, Erode, India
Correspondence: [*] Corresponding author. Sridharan Kannan, Professor, Department of Computer Science and Engineering, J.K.K. Munirajah College of Technology, Erode, India. E-mail: srijik77@gmail.com.
Abstract: In today’s world, mining and learning applications play an essential role in healthcare sectors and intend to transform all the data into an understandable form. However, the healthcare sectors require an automated disease prediction system for better medical analysis and emphasize better prediction accuracy for evaluation purposes. In this paper, a new automated prediction model based on Linearly Support Vector Regression and Stacked Linear Swarm Optimization (LSVR-SLSO) has been proposed to predict heart disease accurately. Primarily, the features are analyzed in a linear and non-linear manner using LSVR feature learning approaches. The extracted features are then fed into the SLSO model in order to extract the global optimal solutions. These global solutions will reduce the data dimensionality and computational complexity during the evaluation phase. Moreover, the optimal solution facilitates the proposed model to predict heart disease appropriately. The simulation can be carried out through the MATLAB environment by utilizing a publicly available benchmark heart disease dataset. The performance results evident that the proposed LSVR-SLSO model can efficiently predict heart disease with superior accuracy of 98%, precision of 98.76%, and recall of 99.7% when compared with conventional approaches. The better performance of the proposed model will pave the way to act as an effective clinical decision support tool for physicians during an emergency.
Keywords: Heart disease prediction, feature selection, optimization, automated system, mining and learning
DOI: 10.3233/JIFS-212772
Journal: Journal of Intelligent & Fuzzy Systems, vol. 44, no. 2, pp. 3189-3202, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl