Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xiao, Hui-Min | Wu, Shou-Wen; * | Wang, Liu
Affiliations: School of Computer and Communication Engineering, Henan University of Economics and Law Zhengzhou, China
Correspondence: [*] Corresponding author. Shou-Wen Wu, School of Computer and Communication Engineering, Henan University of Economics and Law Zhengzhou 450046, China. E-mail: wswlvs@163.com.
Abstract: In the process of large-scale group decision making (LSGDM), probabilistic linguistic term set (PLTS) is an useful tool to represent the preferences of expert. There is a common case that experts tend to provide incomplete preferences due to various reasons. However, previous methods which cope with the missing values never took experts′ level of cognition over alternatives and attributes into account. In reality, because of limited knowledge reservation and the complexity of decision problem, experts have diverse familiarity with each scheme and attribute. For handling the defect, we propose a novel method to fill missing preference values, based on the combination of knowledge-match degree and trust degree of experts providing reference information. We obtain the knowledge-match degree through the accuracy and reliability of preference as well as the trust degree through social network analysis technology (SNA), and use the probabilistic linguistic weighted average operator (PLWA) to integrate the referential values into preferences of the missing expert. Moreover, to solve the consensus problem at minimal cost, a consensus model based minimum adjust is developed in which the consensus degree of identified elements are all lowest at three aspects including decision matrix, internal experts and intra-group. On the basis of the trust relationship, revising the preference with low consensus guarantees regulated experts′ real aspiration. In addition, a new approach to measure the weight of sub-group is proposed in the light of trust in-degree which considers the reliability of experts in the same subgroup.The feasibility and validity of the LSGDM method are tested by using a numerical example and comparing with other methods.
Keywords: Incomplete preference, knowledge-match degree, trust degree, social network analysis, probabilistic linguistic term set
DOI: 10.3233/JIFS-212569
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 4, pp. 4037-4060, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl