Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mariappan, Gengaraj; * | Lakshmanan, Kalaivani
Affiliations: Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, Tamil Nadu, India
Correspondence: [*] Corresponding author. Mr. Gengaraj Mariappan, Assistant Professor, Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, Tamil Nadu, India. E-mail: mgengaraj0703@gmail.com.
Abstract: In this manuscript, a hybrid technique is proposed for Torque Ripple (TR) minimization of Switched Reluctance Motor (SRM). The proposed technique is the consolidation of Wingsuit flying search (WFS) optimization and Gradient Boosting Decision Tree (GBDT) algorithm, hence it is known as WFS-GBDT technique. The control mechanisms consists of fractional order proportional integral derivative (FOPID) speed controller on external loop as well as current controller on internal loop with controlling turn activate and deactivate angles for SRM. The complexity of acquiring the ideal evaluation of proportional, integral and derivative gains for speed and current controller including turn activate and deactivate angles are deemed as a multi-objective optimization issue. Here, the WFS optimize the gain parameters of external speed loop along internal current loop with commutation angles for turn activate and deactivate switches. The WFS optimization processing is used to productive machine learning dataset under the types of SRM parameter. By using the satisfied dataset, the GBDT is predicted and mandatory forecasting is implemented in the entire machine operating stage. The optimized gain parameters based, the fractional order proportional integral derivative controller is tuned exactly. The proposed WFS-GBDT control technique lessens the torque ripple and quick settling time with this proper control, because of its systematic random search capabilities, thereby enhancing the dynamic execution of SRM drive. Finally, the proposed technique is activated in MATLAB/Simulink site, its performance is analyzed with existing techniques, like Base, ALO and WFS. The best, worst, mean, standard deviation for ISEspeed using proposed technique attains 230.5364, 231.5934, 230.952 and 0.05314. The best, worst, mean and standard deviation for torque ripple using proposed technique attains 0.4571, 0.6548, 0.585 and 0.472. The best, worst, mean, standard deviation for ISEcurrent using proposed technique attains 3.1257, 3.9754, 3.5783 and 0.0472.
Keywords: Switched reluctance motor, torque ripple minimization, speed, current, gain parameters and dynamic efficiency
DOI: 10.3233/JIFS-212519
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 1481-1504, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl