Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cao, Yukun; * | Miao, Zeyu
Affiliations: Shanghai University of Electric Power, Shanghai
Correspondence: [*] Corresponding author. Yukun Cao, Shanghai University of Electric Power, 1851 Huchenghuan Road, Shanghai. E-mail: marilyn_cao@163.com.
Abstract: Knowledge graph link prediction uses known fact links to infer the missing link information in the knowledge graph, which is of great significance to the completion of the knowledge graph. Generating low-dimensional embeddings of entities and relations which are used to make inferences is a popular way for such link prediction problems. This paper proposes a knowledge graph link prediction method called Complex-InversE in the complex space, which maps entities and relations into the complex space. The composition of complex embeddings can handle a large variety of binary relations, among them symmetric and antisymmetric relations. The Complex-InversE effectively captures the antisymmetric relations and introduces Dropout and Early-Stopping technologies into deal with the problem of small numbers of relationships and entities, thus effectively alleviates the model’s overfitting. The results of comparison experiment on the public knowledge graph datasets show that the Complex-InversE achieves good results on multiple benchmark evaluation indicators and outperforms previous methods. Complex-InversE’s code is available on GitHub at https://github.com/ZeyuMiao97/Complex-InversE.
DOI: 10.3233/JIFS-212374
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6079-6089, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl