Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kumar, Arvind; * | Sodhi, Sartaj Singh
Affiliations: Computer Sc and Engg, USICT GGSIPU Delhi
Correspondence: [*] Corresponding author. Arvind Kumar, Computer Sc and Engg, USICT GGSIPU Delhi. E-mail: arvind.usict.134164@ipu.ac.in.
Abstract: We increase the power of the Artificial Neural Networks with the help of the Activation Function (AF). The tansig and logsig are widely used AF. But there is still requires some improvement in the AF. So, in this paper, we have proposed a NewSigmoid AF in the neural network. NewSigmoid is also as powerful as tansig and logsig. In multiple cases, the NewSigmoid function gives a better or equivalent performance as compared with both these AF. Like these AF, NewSigmoid is also a smooth S-shape, bounded, continuously differentiable, and zero-centered function. Therefore the NewSigmoid is also suitable for solving non-linear problems. We have tested this AF on iris, cancer, glass, chemical, bodyfat, wine, and ovarian datasets. We use Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM), and Bayesian Regularization (BR) algorithms during the optimization of the neural network. Maximum 100% accuracy in the iris dataset while using LM, and BR; 99.9% accuracy in the cancer dataset using BR; 100% accuracy in the glass dataset using BR; 100% accuracy in the chemical and bodyfat dataset using SCG, LM, and BR; 100% accuracy in the wine dataset using LM, and BR; and 99.1% accuracy in the ovarian dataset using BR has been found while working with multilayer neural networks. The NewSigmoid also achieves 100% training and validation accuracy on the mathework-cap image dataset using SCG.
Keywords: Logsigmoid, tanigmoid, neural network, activation function, multilayer network.
DOI: 10.3233/JIFS-212333
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 545-559, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl