Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sha, Ganga; * | Wu, Junshengb | Yu, Binc
Affiliations: [a] School of Computer Science, Northwestern Polytechnical University, Xi’an, P. R. China | [b] School of Software & Microelectronics, Northwestern Polytechnical University, Xi’an, P. R. China | [c] School of Computer Science and Technology, Xidian University, Xi an 710071, P. R. China
Correspondence: [*] Corresponding author. Gang Sha, School of Computer Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China. E-mail: shagang@mail.nwpu.edu.cn.
Abstract: Purpose:at present, more and more deep learning algorithms are used to detect and segment lesions from spinal CT (Computed Tomography) images. But these algorithms usually require computers with high performance and occupy large resources, so they are not suitable for the clinical embedded and mobile devices, which only have limited computational resources and also expect a relative good performance in detecting and segmenting lesions. Methods:in this paper, we present a model based on Yolov3-tiny to detect three spinal fracture lesions, cfracture (cervical fracture), tfracture (thoracic fracture), and lfracture (lumbar fracture) with a small size model. We construct this novel model by replacing the traditional convolutional layers in YoloV3-tiny with fire modules from SqueezeNet, so as to reduce the parameters and model size, meanwhile get accurate lesions detection. Then we remove the batch normalization layers in the fire modules after the comparative experiments, though the overall performance of fire module without batch normalization layers is slightly improved, we can reduce computation complexity and low occupations of computer resources for fast lesions detection. Results:the experiments show that the shrank model only has a size of 13 MB (almost a third of Yolov3-tiny), while the mAP (mean Average Precsion) is 91.3%, and IOU (intersection over union) is 90.7. The detection time is 0.015 second per CT image, and BFLOP/s (Billion Floating Point Operations per Second) value is less than Yolov3-tiny. Conclusion:the model we presented can be deployed in clinical embedded and mobile devices, meanwhile has a relative accurate and rapid real-time lesions detection.
Keywords: Deep learning, Yolov3-tiny, shrank model, fire module, detection and location
DOI: 10.3233/JIFS-212255
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2809-2828, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl