Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sindhiya Devi, R.; * | Perumal, B. | Pallikonda Rajasekaran, M.
Affiliations: Department of ECE, Kalasalingam Academy of Research and Education, Krishnankoil, India
Correspondence: [*] Corresponding author. R. Sindhiya Devi, Department of ECE, Kalasalingam Academy of Research and Education, Krishnankoil, India. E-mail: sindhiyadevi14@gmail.com.
Abstract: In today’s world, Brain Tumor diagnosis plays a significant role in the field of Oncology. The earlier identification of brain tumors increases the compatibility of treatment of patients and offers an efficient diagnostic recommendation from medical practitioners. Nevertheless, accurate segmentation and feature extraction are the vital challenges in brain tumor diagnosis where the handling of higher resolution images increases the processing time of existing classifiers. In this paper, a new robust weighted hybrid fusion classifier has been proposed to identify and classify the tumefaction in the brain which is of the hybridized form of SVM, NB, and KNN (SNK) classifiers. Primarily, the proposed methodology initiates the preprocessing technique such as adaptive fuzzy filtration and skull stripping in order to remove the noises as well as unwanted regions. Subsequently, an automated hybrid segmentation strategy can be carried out to acquire the initial segmentation results, and then their outcomes are compiled together using fusion rules to accurately localize the tumor region. Finally, a Hybrid SNK classifier is implemented in the proposed methodology for categorizing the type of tumefaction in the brain. The hybrid classifier has been compared with the existing state-of-the-art classifier which shows a higher accuracy result of 99.18% while distinguishing the benign and malignant tumors from brain Magnetic Resonance (MR) images.
Keywords: Adaptive fuzzy filter, brain MR images, tumor diagnosis, hybrid classifier, segmentation
DOI: 10.3233/JIFS-212200
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6063-6078, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl