Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Tingting | Tang, Zhenpeng; * | Zhan, Linjie | Du, Xiaoxu | Chen, Kaijie
Affiliations: School of Economics and Management, Fuzhou University, Fuzhou, Fujian, PR China
Correspondence: [*] Corresponding author: Zhenpeng Tang, School of Economics and Management, Fuzhou University, Fuzhou, Fujian, PR, China. E-mail: zhenpt@fzu.edu.cn.
Abstract: An important feature of the outbreak of systemic financial risk is that the linkage and contagion of risk amongst the various sub-markets of the financial system have increased significantly. In addition, research on the prediction of systemic financial risk plays a significant role in the sustainable development of the financial market. Therefore, this paper takes China’s financial market as its research object, considers the risks co-activity among major financial sub-markets, and constructs a financial composite indicator of systemic stress (CISS) for China, describing its financial systemic stress based on 12 basic indicators selected from the money market, bond market, stock market, and foreign exchange market. Furthermore, drawing on the decomposition and integration technology in the TEI@I complex system research methodology, this paper introduces advanced variational mode decomposition (VMD) technology and extreme learning machine (ELM) algorithms, constructing the VMD-DE-ELM hybrid model to predict the systemic risk of China’s financial market. According to eRMSE, eMAE, and eMAPE, the prediction model’s multistep-ahead forecasting effect is evaluated. The empirical results show that the China’s financial CISS constructed in this paper can effectively identify all kinds of risk events in the sample range. The results of a robustness test show that the overall trend of China’s financial CISS and its ability to identify risk events are not affected by parameter selection and have good robustness. In addition, compared with the benchmark model, the VMD-DE-ELM hybrid model constructed in this paper shows superior predictive ability for systemic financial risk.
Keywords: Systemic financial risk, financial stress indicator, artificial intelligence model, VMD, DE-ELM
DOI: 10.3233/JIFS-212178
Journal: Journal of Intelligent & Fuzzy Systems, vol. 43, no. 1, pp. 279-294, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl