Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhu, Xiaowei; * | Han, Yu | Li, Shichong | Wang, Xinyin
Affiliations: China Mobile Group Shandong Co., Ltd., Jinan, China
Correspondence: [*] Corresponding author. Xiaowei Zhu, China Mobile Group Shandong Co., Ltd., Jinan 250001, China. E-mail: zhuxiaoweish@sd.chinamobile.com.
Abstract: With the rapid growth of social network users, the social network has accumulated massive social network topics. However, due to the randomness of content, it becomes sparse and noisy, accompanied by many daily chats and meaningless topics, which brings challenges to bursty topics discovery. To deal with these problems, this paper proposes the spatial-temporal topic model with sparse prior and recurrent neural networks (RNN) prior for bursty topic discovering (ST-SRTM). The semantic relationship of words is learned through RNN to alleviate the sparsity. The spatial-temporal areas information is introduced to focus on bursty topics for further weakening the semantic sparsity of social network context. Besides, we introduced the “Spike and Slab” prior to decouple the sparseness and smoothness. Simultaneously, we realized the automatic discovery of social network bursts by introducing the burstiness of words as the prior and binary switching variables. We constructed multiple sets of comparative experiments to verify the performance of ST-SRTM by leveraging different evaluation indicators on real Sina Weibo data sets. The experimental results confirm the superiority of our ST-SRTM.
Keywords: Social network, bursty topic, topic model, RNN, sparse prior
DOI: 10.3233/JIFS-212135
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 3909-3922, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl