Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhao, Hang | Chu, Jianjie; * | Mo, Rong | Chen, Chen | Ding, Ning
Affiliations: Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi’an, China
Correspondence: [*] Corresponding author. Chu Jianjie, Key Laboratory of Industrial Design and Ergonomics, Ministry of Industry and Information Technology, Northwestern Polytechnical University, No 127, Friendship West Road, Xi’an 710072, Shaanxi, China. E-mail: cjj@nwpu.edu.cn.
Abstract: At present, high-speed trains have become popular modern transportation. As a significant part of the high-speed train riding activity, the stowing and unloading luggage task has its characteristics. To comprehensively and reasonably evaluate passenger comfort of the stowing and unloading luggage task in high-speed trains. In this paper, passenger behavior characteristics are firstly analyzed by the author, the theoretical architecture of passenger comfort evaluation is constructed with the perspective of product aesthetics and ergonomics, and then the process of the passenger comfort evaluation is put forward. Secondly, a combination of Rough Number (RN) and Decision Making Trial and Evaluation Laboratory (DEMATEL) (i.e. R-DEMATEL) is utilized to solve the centrality degree of comfort influencing factors and determine comfort evaluation indexes. Furthermore, the passenger comfort evaluation model with Fuzzy Neural Network (FNN) is constructed and trained. After that, the sample data of the evaluation are collected through the simulated experiment of the stowing and unloading luggage task, and they are trained with FNN comparing to Back Propagation Neural Network (BPNN). Eventually, the result of examples testing is verified that the effectiveness of the proposed method.
Keywords: Comfort evaluation, stowing and unloading luggage, Rough-DEMATEL (R-DEMATEL), FNN, high-speed trains
DOI: 10.3233/JIFS-212109
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 5653-5665, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl