Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Min | Yang, Haijie; * | Li, Pengfei | Jiang, Ming
Affiliations: School of Computer Science, Hangzhou Dianzi University, Hangzhou, China
Correspondence: [*] Corresponding author. Haijie Yang, School of Computer Science, Hangzhou Dianzi University, Hangzhou, 310000, China. E-mail: yhjhdu@163.com.
Abstract: Human pose estimation is still a challenging task in computer vision, especially in the case of camera view transformation, joints occlusions and overlapping, the task will be of ever-increasing difficulty to achieve success. Most existing methods pass the input through a network, which typically consists of high-to-low resolution sub-networks that are connected in series. Still, during the up-sampling process, the spatial relationships and details might be lost. This paper designs a parallel atrous convolutional network with body structure constraints (PAC-BCNet) to address the problem. Among the mentioned techniques, the parallel atrous convolution (PAC) is constructed to deal with scale changes by connecting multiple different atrous convolution sub-networks in parallel. And it is used to extract features from different scales without reducing the resolution. Besides, the body structure constraints (BC), which enhance the correlation between each keypoint, are constructed to obtain better spatial relationships of the body by designing keypoints constraints sets and improving the loss function. In this work, a comparative experiment of the serial atrous convolution, the parallel atrous convolution, the ablation study with and without body structure constraints are conducted, which reasonably proves the effectiveness of the approach. The model is evaluated on two widely used human pose estimation benchmarks (MPII and LSP). The method achieves better performance on both datasets.
Keywords: Computer vision, human pose estimation, parallel atrous convolution, body structure constraints
DOI: 10.3233/JIFS-212061
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 5553-5563, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl