Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Lu, Fengli | Fu, Chengcai | Zhang, Guoying; * | Shi, Jie
Affiliations: School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China
Correspondence: [*] Corresponding author. Guoying Zhang, School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Ding No. 11 Xueyuan Road, Haidian District, Beijing, China, 100083. Tel.: +86 137 1755 9517; E-mail: zhangguoying1101@163.com.
Abstract: Accurate segmentation of fractures in coal rock CT images is important for the development of coalbed methane. However, due to the large variation of fracture scale and the similarity of gray values between weak fractures and the surrounding matrix, it remains a challenging task. And there is no published dataset of coal rock, which make the task even harder. In this paper, a novel adaptive multi-scale feature fusion method based on U-net (AMSFF-U-net) is proposed for fracture segmentation in coal rock CT images. Specifically, encoder and decoder path consist of residual blocks (ReBlock), respectively. The attention skip concatenation (ASC) module is proposed to capture more representative and distinguishing features by combining the high-level and low-level features of adjacent layers. The adaptive multi-scale feature fusion (AMSFF) module is presented to adaptively fuse different scale feature maps of encoder path; it can effectively capture rich multi-scale features. In response to the lack of coal rock fractures training data, we applied a set of comprehensive data augmentation operations to increase the diversity of training samples. These extensive experiments are conducted via seven state-of-the-art methods (i.e., FCEM, U-net, Res-Unet, Unet++, MSN-Net, WRAU-Net and ours). The experiment results demonstrate that the proposed AMSFF-U-net can achieve better segmentation performance in our works, particularly for weak fractures and tiny scale fractures.
Keywords: Multi-scale feature fusion, U-net, fracture segmentation in coal rock CT image, dilation convolutions, residual U-net
DOI: 10.3233/JIFS-211968
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 3761-3774, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl