Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rajagopal, Sureshkumara | Umapathy, Prabhab
Affiliations: [a] Department of EEE, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India | [b] Department of Electrical & Electronics Engineering, Dr. N.G.P Institute of Technology, Coimbatore, Tamilnadu, India
Correspondence: [*] Corresponding author. Sureshkumar Rajagopal, M.E., (Ph.D), Assistant Professor, Department of EEE, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India. E-mail: sureshpls45@gmail.com.
Abstract: As the move towards Grid Integrated-Photovoltaic (GI-PV) system is proposed to improve the power quality development. A novel Adaptive Neuro-Fuzzy Inference System (ANFIS) based on improved Moth Flame Optimization (MFO) algorithm is described for grid integrated approach. The solar integration of Maximum Power Point (MPP) fed into modified Switched Boost Inverter (SBI) is presented, this GI-PV connected circuit has become prominent research in a recent scenario for energy demand. Proposed MFOA-ANFIS controller has generated the duty cycle pulses to each converter circuit. The benefit of grid-tied SBI is direct control outer-loop employed to obtain MFO-ANFIS techniques. To maintain a constant voltage DC-link is employed for inner-loop, this presence of constant DC-power to grid loads with support of MFO-ANFIS assists Proportional Integral Differential (PID) method. The results acquired by the simulation expressed that the proposed controller is addressed to maintain active and reactive power exchange, regulate DC bus-link voltages, grid voltage, and grid current. The effectiveness of the practical implication research is achieved by the output as represented as minimum grid harmonics, load current, and compensator current as verified in MATLAB/Simulink platform.
Keywords: Grid Integrated-Photovoltaic, Maximum Power Point, Adaptive Neuro-Fuzzy Inference System, Moth Flame Optimization Algorithm
DOI: 10.3233/JIFS-211748
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 2505-2519, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl