Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Selvaraj, Poovarasan; * | Chandra, E.
Affiliations: Department of Computer Science, Bharathiar University, Coimbatore
Correspondence: [*] Corresponding author. Poovarasan Selvaraj, Ph.D, Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore 641046. E-mail: poovarasan.cs@buc.edu.in.
Abstract: The most challenging process in recent Speech Enhancement (SE) systems is to exclude the non-stationary noises and additive white Gaussian noise in real-time applications. Several SE techniques suggested were not successful in real-time scenarios to eliminate noises in the speech signals due to the high utilization of resources. So, a Sliding Window Empirical Mode Decomposition including a Variant of Variational Model Decomposition and Hurst (SWEMD-VVMDH) technique was developed for minimizing the difficulty in real-time applications. But this is the statistical framework that takes a long time for computations. Hence in this article, this SWEMD-VVMDH technique is extended using Deep Neural Network (DNN) that learns the decomposed speech signals via SWEMD-VVMDH efficiently to achieve SE. At first, the noisy speech signals are decomposed into Intrinsic Mode Functions (IMFs) by the SWEMD Hurst (SWEMDH) technique. Then, the Time-Delay Estimation (TDE)-based VVMD was performed on the IMFs to elect the most relevant IMFs according to the Hurst exponent and lessen the low- as well as high-frequency noise elements in the speech signal. For each signal frame, the target features are chosen and fed to the DNN that learns these features to estimate the Ideal Ratio Mask (IRM) in a supervised manner. The abilities of DNN are enhanced for the categories of background noise, and the Signal-to-Noise Ratio (SNR) of the speech signals. Also, the noise category dimension and the SNR dimension are chosen for training and testing manifold DNNs since these are dimensions often taken into account for the SE systems. Further, the IRM in each frequency channel for all noisy signal samples is concatenated to reconstruct the noiseless speech signal. At last, the experimental outcomes exhibit considerable improvement in SE under different categories of noises.
Keywords: Speech enhancement, SWEMD-VVMDH, DNN, ideal ratio mask, speech quality, speech intelligibility, generalizability
DOI: 10.3233/JIFS-211236
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 3, pp. 1869-1883, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl