Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ding, Ling | Chen, Xiaojun | Xiang, Yang; *
Affiliations: Computer Science and Technology Department, Tongji University, Cao’an highway, Jiading District, Shanghai, China
Correspondence: [*] Corresponding author. Yang Xiang, Computer Science and Technology Department, Tongji University, No. 4800, Cao’an highway, Jiading District, Shanghai, China. E-mail: tjdxxiangyang@gmail.com.
Abstract: Few-shot text classification aims to learn a classifier from very few labeled text data. Existing studies on this topic mainly adopt prototypical networks and focus on interactive information between support set and query instances to learn generalized class prototypes. However, in the process of encoding, these methods only pay attention to the matching information between support set and query instances, and ignore much useful information about intra-class similarity and inter-class dissimilarity between all support samples. Therefore, in this paper we propose a negative-supervised capsule graph neural network (NSCGNN) which explicitly takes use of the similarity and dissimilarity between samples to make the text representations of the same type closer with each other and the ones of different types farther away, leading to representative and discriminative class prototypes. We firstly construct a graph to obtain text representations in the form of node capsules, where both intra-cluster similarity and inter-cluster dissimilarity between all samples are explored with information aggregation and negative supervision. Then, in order to induce generalized class prototypes based on those node capsules obtained from graph neural network, the dynamic routing algorithm is utilized in our model. Experimental results demonstrate the effectiveness of our proposed NSCGNN model, which outperforms existing few-shot approaches on three benchmark datasets.
Keywords: Graph neural networks, negative supervision, dynamic routing, few-shot learning
DOI: 10.3233/JIFS-210795
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6875-6887, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl