Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Han, Guojiang | Chen, Caikou; * | Xu, Zhixuan | Zhou, Shengwei
Affiliations: College of Information Engineering, Yangzhou University, Yangzhou, China
Correspondence: [*] Corresponding author. Caikou Chen, College of Information Engineering, Yangzhou University, Yangzhou 225127, China. E-mail: yzcck@126.com.
Abstract: Ensemble learning using a set of deep convolutional neural networks (DCNNs) as weak classifiers has become a powerful tool for face expression. Nevertheless, training a DCNNS-based ensemble is not only time consuming but also gives rise to high redundancy due to the nature of DCNNs. In this paper, a novel DCNNs-based ensemble method, named weighted ensemble with angular feature learning (WDEA), is proposed to improve the computational efficiency and diversity of the ensemble. Specifically, the proposed ensemble consists of four parts including input layer, trunk layers, diversity layers and loss fusion. Among them, the trunk layers which are used to extract the local features of face images are shared by diversity layers such that the lower-level redundancy can be largely reduced. The independent branches enable the diversity of the ensemble. Rather than the traditional softmax loss, the angular softmax loss is employed to extract more discriminant deep feature representation. Moreover, a novel weighting technique is proposed to enhance the diversity of the ensemble. Extensive experiments were performed on CK+ and AffectNet. Experimental results demonstrate that the proposed WDEA outperforms existing ensemble learning methods on the recogntion rate and computational efficiency.
Keywords: Facial expression recognition, ensemble-based CNN, end to end learning, weight matrix unit
DOI: 10.3233/JIFS-210762
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6845-6857, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl