Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sun, Guangling | Hu, Haoqi | Zhang, Xinpeng | Lu, Xiaofeng; *
Affiliations: School of Communication and Information Engineering, Shanghai University, Shanghai, China
Correspondence: [*] Corresponding author. Xiaofeng Lu, School of Communication and Information Engineering, Shanghai University, Shanghai, China. E-mail: luxiaofeng@shu.edu.cn.
Abstract: Universal Adversarial Perturbations(UAPs), which are image-agnostic adversarial perturbations, have been demonstrated to successfully deceive computer vision models. Proposed UAPs in the case of data-dependent, use the internal layers’ activation or the output layer’s decision values as supervision. In this paper, we use both of them to drive the supervised learning of UAP, termed as fully supervised UAP(FS-UAP), and design a progressive optimization strategy to solve the FS-UAP. Specifically, we define an internal layers supervised objective relying on multiple major internal layers’ activation to estimate the deviations of adversarial examples from legitimate examples. We also define an output layer supervised objective relying on the logits of output layer to evaluate attacking degrees. In addition, we use the UAP found by previous stage as the initial solution of the next stage so as to progressively optimize the UAP stage-wise. We use seven networks and ImageNet dataset to evaluate the proposed FS-UAP, and provide an in-depth analysis for the latent factors affecting the performance of universal attacks. The experimental results show that our FS-UAP (i) has powerful capability of cheating CNNs (ii) has superior transfer-ability across models and weak data-dependent (iii) is appropriate for both untarget and target attacks.
Keywords: Deep learning models, universal adversarial perturbations, fully supervised, progressive optimization
DOI: 10.3233/JIFS-210728
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 4959-4968, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl