Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Saif, Shahela; * | Tehseen, Samabia
Affiliations: Bahria University, Islamabad
Correspondence: [*] Corresponding author. Shahela Saif. E-mails: shahela.saif@comsats.edu.pk and shahelasaif@gmail.com.
Abstract: Deep learning has been used in computer vision to accomplish many tasks that were previously considered too complex or resource-intensive to be feasible. One remarkable application is the creation of deepfakes. Deepfake images change or manipulate a person’s face to give a different expression or identity by using generative models. Deepfakes applied to videos can change the facial expressions in a manner to associate a different speech with a person than the one originally given. Deepfake videos pose a serious threat to legal, political, and social systems as they can destroy the integrity of a person. Research solutions are being designed for the detection of such deepfake content to preserve privacy and combat fake news. This study details the existing deepfake video creation techniques and provides an overview of the deepfake datasets that are publicly available. More importantly, we provide an overview of the deepfake detection methods, along with a discussion on the issues, challenges, and future research directions. The study aims to present an all-inclusive overview of deepfakes by providing insights into the deepfake creation techniques and the latest detection methods, facilitating the development of a robust and effective deepfake detection solution.
Keywords: Video forgery, forgery detection, deepfakes, deepfake videos, deepfake detection
DOI: 10.3233/JIFS-210625
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 4, pp. 2989-3009, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl