Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wang, Shengwei; * | Li, Ping | Ji, Hao | Zhan, Yulin | Li, Honghong
Affiliations: College of Computer Science and Engineering, Northwest Normal University, Lanzhou, China
Correspondence: [*] Corresponding author. Shengwei Wang, College of Computer Science and Engineering, Northwest Normal University, Lanzhou, 730070, China. Tel.: +86 15550018186; E-mail: Wangsw@nwnu.edu.cn.
Abstract: Intelligent algorithms using deep learning can help learn feature data with nonlinearity and uncertainty, such as time-series particle concentration data. This paper proposes an improved particle swarm optimization (IPSO) algorithm using nonlinear decreasing weights to optimize the hyperparameters, such as the number of hidden layer neurons, learning rate, and maximum number of iterations of the long short-term memory (LSTM) neural network, to predict the time series for air particulate concentration and capture its data dependence. The IPSO algorithm uses nonlinear decreasing weights to make the inertia weights nonlinearly decreasing during the iteration process to improve the convergence speed and capability of finding the global optimization of the PSO. This study addresses the limitations of the traditional method and exhibits accurate predictions. The results of the improved algorithm reveal that the root means square, mean absolute percentage error, and mean absolute error of the IPSO-LSTM model predicted changes in six particle concentrations, which decreased by 1.59% to 5.35%, 0.25% to 3.82%, 7.82% to 13.65%, 0.7% to 3.62%, 0.01% to 3.55%, and 1.06% to 17.21%, respectively, compared with the LSTM and PSO-LSTM models. The IPSO-LSTM prediction model has higher accuracy than the other models, and its accurate prediction model is suitable for regional air quality management and effective control of the adverse effects of air pollution.
Keywords: Particle concentration, particle swarm optimization, long short-term memory network, nonlinear decreasing weight, air pollution
DOI: 10.3233/JIFS-210603
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 1869-1885, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl