Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Akram, Muhammad; * | Siddique, Saba | Ahmad, Uzma
Affiliations: Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan
Correspondence: [*] Corresponding author. Muhammad Akram, Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan. E-mail: m.akram@pucit.edu.pk.
Abstract: The main objective of this research article is to classify different types of m-polar fuzzy edges in an m-polar fuzzy graph by using the strength of connectedness between pairs of vertices. The identification of types of m-polar fuzzy edges, including α-strong m-polar fuzzy edges, β-strong m-polar fuzzy edges and δ-weak m-polar fuzzy edges proved to be very useful to completely determine the basic structure of m-polar fuzzy graph. We analyze types of m-polar fuzzy edges in strongest m-polar fuzzy path and m-polar fuzzy cycle. Further, we define various terms, including m-polar fuzzy cut-vertex, m-polar fuzzy bridge, strength reducing set of vertices and strength reducing set of edges. We highlight the difference between edge disjoint m-polar fuzzy path and internally disjoint m-polar fuzzy path from one vertex to another vertex in an m-polar fuzzy graph. We define strong size of an m-polar fuzzy graph. We then present the most celebrated result due to Karl Menger for m-polar fuzzy graphs and illustrate the vertex version of Menger’s theorem to find out the strongest m-polar fuzzy paths between affected and non-affected cities of a country due to an earthquake. Moreover, we discuss an application of types of m-polar fuzzy edges to determine traffic-accidental zones in a road network. Finally, a comparative analysis of our research work with existing techniques is presented to prove its applicability and effectiveness.
Keywords: α-strong m-polar fuzzy edges, β-strong m-polar fuzzy edges, Menger’s theorem for m-polar fuzzy graphs, Traffic-accidental zones in a road network, Flowchart
DOI: 10.3233/JIFS-210411
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 1553-1574, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl