Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhu, Yunwena | Zhang, Wenjunb | Zhang, Meixiana | Zhang, Kea | Zhu, Yonghuaa; *
Affiliations: [a] Shanghai Film Academy, Shanghai University, Shanghai, China | [b] College of Information Technology, Shanghai Jian Qiao University, Shanghai, China
Correspondence: [*] Corresponding author. Yonghua Zhu, Shanghai Film Academy, Shanghai University, Shanghai, China. E-mail: zyh@shu.edu.cn.
Abstract: With the trend of people expressing opinions and emotions via images online, increasing attention has been paid to affective analysis of visual content. Traditional image affective analysis mainly focuses on single-label classification, but an image usually evokes multiple emotions. To this end, emotion distribution learning is proposed to describe emotions more explicitly. However, most current studies ignore the ambiguity included in emotions and the elusive correlations with complex visual features. Considering that emotions evoked by images are delivered through various visual features, and each feature in the image may have multiple emotion attributes, this paper develops a novel model that extracts multiple features and proposes an enhanced fuzzy k-nearest neighbor (EFKNN) to calculate the fuzzy emotional memberships. Specifically, the multiple visual features are converted into fuzzy emotional memberships of each feature belonging to emotion classes, which can be regarded as an intermediate representation to bridge the affective gap. Then, the fuzzy emotional memberships are fed into a fully connected neural network to learn the relationships between the fuzzy memberships and image emotion distributions. To obtain the fuzzy memberships of test images, a novel sparse learning method is introduced by learning the combination coefficients of test images and training images. Extensive experimental results on several datasets verify the superiority of our proposed approach for emotion distribution learning of images.
Keywords: Image emotion recognition, emotion distribution learning, fuzzy emotional membership, sparse learning
DOI: 10.3233/JIFS-210251
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 6443-6460, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl