Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jyothi, R.L.a; *.** | Rahiman, M. Abdulb
Affiliations: [a] University of Kerala | [b] LBS Center for Science and Technology
Correspondence: [*] Corresponding author. Jyothi, University of Kerala. E-mail: jyothi@ceconline.edu.
Abstract: Binarization is the most important stage in historical document image processing. Efficient working of character and word recognition algorithms depend on effective segmentation methods. Segmentation algorithms in turn depend on images free of noises and degradations. Most of these historical documents are illegible with degradations like bleeding through degradation, faded ink or faint characters, uneven illumination, contrast variation, etc. For effective processing of these document images, efficient binarization algorithms should be devised. Here a simple modified version of the Convolutional Neural Network (CNN) is proposed for historical document binarization. AOD-Net architecture for generating dehazed images from hazed images is modified to create the proposed network.The new CNN model is created by incorporating Difference of Concatenation layer (DOC), Enhancement layer (EN) and Thresholding layer into AOD-Net to make it suitable for binarization of highly degraded document images. The DOC layer and EN layer work effectively in solving degradation that exists in the form of low pass noises. The complexity of working of the proposed model is reduced by decreasing the number of layers and by introducing filters in convolution layers that work with low inter-pixel dependency. This modified version of CNN works effectively with a variety of highly degraded documents when tested with the benchmark historical datasets. The main highlight of the proposed network is that it works efficiently in a generalized manner for any type of document images without further parameter tuning. Another important highlight of this method is that it can handle most of the degradation categories present in document images. In this work, the performance of the proposed model is compared with Otsu, Sauvola, and three recent Deep Learning-based models.
Keywords: Binarization, historical document images, degradation, difference of concatenated convolutions, enhancement layer
DOI: 10.3233/JIFS-210015
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2939-2952, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl