Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ju, Hongmei | Zhang, Yafang; * | Zhao, Ye
Affiliations: School of Information, Beijing WUZI University, Beijing, China
Correspondence: [*] Corresponding author. Yafang Zhang, School of Information, Beijing WUZI University, Beijing, China. E-mail: 1172639025@qq.com.
Abstract: Classification problem is an important research direction in machine learning. υ-nonparallel support vector machine (υ-NPSVM) is an important classifier used to solve classification problems. It is widely used because of its structural risk minimization principle, kernel trick, and sparsity. However, when solving classification problems, υ-NPSVM will encounter the problem of sample noises and heteroscedastic noise structure, which will affect its performance. In this paper, two improvements are made on the υ-NPSVM model, and a υ-nonparallel parametric margin fuzzy support vector machine (par-υ-FNPSVM) is established. On the one hand, for the noises that may exist in the data set, the neighbor information is used to add fuzzy membership to the samples, so that the contribution of each sample to the classification is treated differently. On the other hand, in order to reduce the effect of heteroscedastic structure, an insensitive loss function is introduced. The advantages of the new model are verified through UCI machine learning standard data set experiments. Finally, Friedman test and Bonferroni-Dunn test are used to verify the statistical significance of it.
Keywords: Classification problem, sample noises, heteroscedastic noise structure, ν-nonparallel support vector machine, parameter margin, nearest neighbor fuzzy membership
DOI: 10.3233/JIFS-202869
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 11731-11747, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl