Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ajam, Leilaa | Nodehi, Alia; * | Mohamadi, Hoseinb
Affiliations: [a] Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran | [b] Department of Computer Engineering, Azadshar Branch, Islamic Azad University, Azadshar, Iran
Correspondence: [*] Corresponding author. Ali Nodehi, Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran. E-mail: ali.nodehi@gorganiau.ac.ir.
Abstract: Literature in recent years has introduced several studies conducted to solve the target coverage problem in wireless sensor networks (WSNs). Sensors are conventionally assumed as devices with only a single power level. However, real applications may involve sensors with multiple power levels (i.e., multiple sensing ranges each of which possesses a unique power consumption). Consequently, one of the key problems in WSNs is how to provide a full coverage on all targets distributed in a network containing sensors with multiple power levels and simultaneously prolong the network lifetime as much as possible. This problem is known as Maximum Network Lifetime With Adjustable Ranges (MNLAR) and its NP-completeness has been already proved. To solve this problem, we proposed an efficient hybrid algorithm containing Genetic Algorithm (GA) and Tabu Search (TS) aiming at constructing cover sets that consist of sensors with appropriate sensing ranges to provide a desirable coverage for all the targets in the network. In our hybrid model, GA as a robust global searching algorithm is used for exploration purposes, while TS with its already-proved local searching ability is utilized for exploitation purposes. As a result, the proposed algorithm is capable of creating a balance between intensification and diversification. To solve the MNLR problem in an efficient way, the proposed model was also enriched with an effective encoding method, genetic operators, and neighboring structure. In the present paper, different experiments were performed for the purpose of evaluating how the proposed algorithm performs the tasks defined. The results clearly confirmed the superiority of the proposed algorithm over the greedy-based algorithm and learning automata-based algorithm in terms of extending the network lifetime. Moreover, it was found that the use of multiple power levels altogether caused the extension of the network lifetime.
Keywords: Wireless sensor networks, cover set formation, scheduling algorithms, genetic algorithm, Tabu search
DOI: 10.3233/JIFS-202736
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 6, pp. 6245-6255, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl