Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Li, Xina | Li, Xiaolia; b; * | Wang, Kanga
Affiliations: [a] Faculty of Information Technology, Beijing University of Technology, Beijing, China | [b] Beijing Key Laboratory of Computational Intelligence and IntelligentSystem, Engineering Research Center of Digital Community, Ministry of Education, Beijing, China
Correspondence: [*] Corresponding author. Xiaoli Li. E-mail: lixiaolibjut@bjut.edu.cn.
Abstract: In the past two decades, multi-objective evolutionary algorithms (MOEAs) have achieved great success in solving two or three multi-objective optimization problems. As pointed out in some recent studies, however, MOEAs face many difficulties when dealing with many-objective optimization problems(MaOPs) on account of the loss of the selection pressure of the non-dominant candidate solutions toward the Pareto front and the ineffective design of the diversity maintenance mechanism. This paper proposes a many-objective evolutionary algorithm based on vector guidance. In this algorithm, the value of vector angle distance scaling(VADS) is applied to balance convergence and diversity in environmental selection. In addition, tournament selection based on the aggregate fitness value of VADS is applied to generate a high quality offspring population. Besides, we adopt an adaptive strategy to adjust the reference vector dynamically according to the scales of the objective functions. Finally, the performance of the proposed algorithm is compared with five state-of-the-art many-objective evolutionary algorithms on 52 instances of 13 MaOPs with diverse characteristics. Experimental results show that the proposed algorithm performs competitively when dealing many-objective with different types of Pareto front.
Keywords: Vector angle distance scaling, evolutionary algorithm, many-objective optimization problem
DOI: 10.3233/JIFS-202724
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 5, pp. 10285-10306, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl