Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Malini, A.; * | Priyadharshini, P. | Sabeena, S.
Affiliations: Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai, TamilNadu, India
Correspondence: [*] Corresponding author. A. Malini, Department of Computer Science and Engineering, Thiagarajar College of Engineering, Madurai-625015, TamilNadu, India. E-mail: amcse@tce.edu.
Abstract: To develop a surveillance and detection system for automating the process of road maintenance work which is being carried out by surveying and inspection of roads manually in the current situation. The need of the system lies in the fact that traditional methods are time-consuming, tiresome and require huge workforce. This paper proposes an automation system using Unmanned Aerial Vehicle which monitors and detects the pavement defects like cracks and potholes by processing real-time video footage of Indian highways. The collected data is processed and stored as images in a road defects database which serves as input for the system. The behavior of Region Proposal Network (RPN) is made smooth by varying the number of region proposals utilized in the model. A regularization technique called dropout is used to achieve higher performance in the proposed Faster Region based Convolutional Neural Networks object detection model. The detections are made with 62.3% mean Average Precision @ Intersection over Union (IoU)> = 0.5 for the generation of 300 region proposals which is a good score for object detections. The comparisons between proposed and existing systems shows that the proposed Faster RCNN with modified VGG-16 performs well than the existing variants.
Keywords: pothole, region proposal network, mean average precision, unmanned aerial vehicle, dropout
DOI: 10.3233/JIFS-202596
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 11411-11422, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl