Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kumar, Rajeeva | Singh, Laxmanb; * | Tiwari, Rajdevc
Affiliations: [a] Research Scholar, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P., India | [b] Department of Electronics and Communication Engineering, Noida Institute of Engineering, & Technology, Greater Noida, U.P., India | [c] Department of Computer Science & Engineering, GNIOT Group of Institutions, Greater Noida, U.P., India
Correspondence: [*] Corresponding author. Laxman Singh, Assoc. Professor, Electronics & Communication Engineering, NIET: Noida Institute of Engineering and Technology, E-mail: laxman.mehlawat2@gmail.com.
Abstract: Path planning for robots plays a vital role to seek the most feasible path due to power requirement, environmental factors and other limitations. The path planning for the autonomous robots is tedious task as the robot needs to locate a suitable path to move between the source and destination points with multifaceted nature. In this paper, we introduced a new technique named modified grey wolf optimization (MGWO) algorithm to solve the path planning problem for multi-robots. MGWO is modified version of conventional grey wolf optimization (GWO) that belongs to the category of metaheuristic algorithms. This has gained wide popularity for an optimization of different parameters in the discrete search space to solve various problems. The prime goal of the proposed methodology is to determine the optimal path while maintaining a sufficient distance from other objects and moving robots. In MGWO method, omega wolves are treated equally as those of delta wolves in exploration process that helps in escalating the convergence speed and minimizing the execution time. The simulation results show that MGWO gives satisfactory performance than other state of art methods for path planning of multiple mobile robots. The performance of the proposed method is compared with the standard evolutionary algorithms viz., Particle Swarm Optimization (PSO), Intelligent BAT Algorithm (IBA), Grey Wolf Optimization (GWO), and Variable Weight Grey Wolf Optimization (VW-GWO) and yielded better results than all of these.
Keywords: Meta-heuristic, particle swarm optimization, intelligent BAT algorithm, grey wolf optimization (GWO), modified grey wolf optimization (MGWO), variable weight grey wolf optimization (VW-GWO)
DOI: 10.3233/JIFS-201926
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 5, pp. 9453-9470, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl