Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Yana; b | song, Huan-shenga; * | yang, Yan-nia | wang, Gang-fengb
Affiliations: [a] School of Information Engineering, Chang’an University, Xi’an, China | [b] School of Foreign Studies, Chang’an University, Xi’an, China | [c] Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, China
Correspondence: [*] Corresponding author. Huan-Sheng Song, School of Information Engineering, Chang’an University, Xi’an, China. E-mail: hshsong@chd.edu.cn.
Abstract: Mixture production equipment is widely employed in road construction, and the quality of the produced mixture is the essential factor to ensure the quality of road construction. To detect the quality of the real-time produced mixture and solve the shortcomings of laboratory detection lag, a new fault detection method in the mixture production process is proposed, which is based on wavelet packet decomposition (WPD) and support vector machine (SVM). The proposed scheme includes feature extraction, feature selection, SVM classification, and optimization algorithm. During feature extraction, wavelet basis function is utilized to 4-layer decompose the aggregate and asphalt data mixed in real-time. The energy value calculated by wavelet packet coefficient is the extracted feature. During feature selection, a method combining the chi-square test and wrapper (CSW) is conducted to select the optimal feature subset from WPD features. Eventually, by adopting the optimal feature subset, SVM has been developed to classify various faults. Its parameters are optimized by differential evolution (DE) algorithm. In the test stage, multiple faults of different specifications of aggregates and asphalt are detected in the mixture production process. The results demonstrate that (1) accuracy produced by the CSW method with WPD features is 4.33% higher than the PCA method with statistical features; (2) SVM classification method optimized by DE algorithm brings an increase in recognition accuracy of identifying different types of mixture production faults produced by different equipment. Compared to other available methods, the proposed algorithm has a very outstanding detection performance.
Keywords: Mixture production process, fault detection, wavelet packet decomposition (WPD) features, support vector machine (SVM), differential evolution (DE)
DOI: 10.3233/JIFS-201803
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 5, pp. 10235-10249, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl