Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kong, Weiyia; * | Yang, Menglongb | Huang, Qinzhena
Affiliations: [a] Electrical Information Engineering, Southwest Minzu University, Chengdu, Sichuan, China | [b] Aeronautics and Astronauticst, Sichuan University, Chengdu, Sichuan, China
Correspondence: [*] Corresponding author. Weiyi Kong, Electrical Information Engineering, Southwest Minzu University, Chengdu, Sichuan, China. E-mail: veechiry@163.com.
Abstract: This paper proposes a Hilbert stereo reconstruction algorithm based on depth feature and stereo matching to solve the problem of occlusive region matching errors, namely, the Hilbert stereo network. The traditional stereo network pays more attention to disparity itself, leading to the inaccuracy of disparity estimation. Our design network studies the effective disparity matching and refinement through reconstruction representation of Hilbert’s disparity coefficient. Since the Hilbert coefficient is not affected by the occlusion and texture in the image, stereo disparity matching can conducted effectively. Our network includes three sub-modules, namely, depth feature representation, Hilbert cost volume fusion, and Hilbert refinement reconstruction. Separately, texture features of different depth levels of the image were extracted through Hilbert filtering operation. Next, stereoscopic disparity fusion was performed, and then Hilbert designed to refine the difference regression stereo matching solution was used. Based on the end-to-end design, the structure is refined by combining the depth feature extraction module and Hilbert coefficient disparity. Finally, the Hilbert stereo matching algorithm achieves excellent performance on standard big data set and is compared with other advanced stereo networks. Experiments show that our network has high accuracy and high performance.
Keywords: Stereo matching, hilbert analysis, image processing, multiple resolutions
DOI: 10.3233/JIFS-201749
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 8027-8038, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl