Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Imran, | Ahmad, Shabir | Kim, Do Hyeun; *
Affiliations: Department of Computer Engineering, Jeju National University, Jeju, Korea
Correspondence: [*] Corresponding author. Do Hyeun Kim, Department of Computer Engineering, Jeju National University, Jeju, Korea. Tel.: +82-10-5267-3263; E-mail: kimdh@jejunu.ac.kr.
Abstract: Mountains are attraction spots for tourists, and tourism contributes to the country’s gross domestic product. Mountains have many benefits such as biodiversity, tourism, and the supplication of food, to name a few. However, there are challenges to protect mountain lives from hazards such as fire caused by tourist activities in mountains. The in-time fire detection and notification to the authorities have always been the central point in literature studies, and different studies have been carried out to optimize the notification time. In this paper, we model the fire detection and notification as a real-time internet of things application and uses task orchestration and task scheduling mechanism to provide scalability along with optimal latency. The proposed fire detection and prediction mechanism detect mountain fire at the earliest stage and provide predictive analysis to prevent damage to mountain life and tourists. The architecture is based on microservice-based IoT task orchestration mechanism and device virtualization, which is not only lightweight but also handles a single problem in parallel chunks, thus optimizes the latency. The in-time information about the fire is used for predictive analysis and notified to safety authorities which helps them to make a more informed decisions to minimize the damage caused by mountain fire. The performance of the proposed mechanism is evaluated in terms of different measures such as RMSE, MAPE, MSE, and MAPE. The proposed work approaches the fire detection and notification as a collection of tasks, and thus those tasks are selected for deployment which are guaranteed to be executed and have minimum latency. This idea of pre-planing the latency and task execution is the first attempt to the best of the authors’ knowledge.
Keywords: Internet of things, fire safety, fire detection, fire notification, predictive analysis, microservices, fire tracking, virtual objects
DOI: 10.3233/JIFS-201614
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 5681-5696, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl