Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gu, Yujiea | Zhao, Yuxiub | Zhou, Jianb | Li, Huib; * | Wang, Yujieb
Affiliations: [a] Research Center of Energy Economy, School of Business Administration, Henan Polytechnic University, Jiaozuo, China | [b] School of Management, Shanghai University, Shanghai, China
Correspondence: [*] Corresponding author. Hui Li, School of Management, Shanghai University, Shanghai 200444, China. Tel.: +86-21-66134414 (ext. 805). E-mail: youlanlihui@shu.edu.cn. (H. Li).
Abstract: Air quality index (AQI) is an indicator usually issued on a daily basis to inform the public how good or bad air quality recently is or how it will become over the next few days, which is of utmost importance in our life. To provide a more practicable way for AQI prediction, so that residents can clear about air conditions and make further plans, five imperative meteorological indicators are elaborately selected. Accordingly, taking these indicators as independent variables, a fuzzy multiple linear regression model with Gaussian fuzzy coefficients is proposed and reformulated, based on the linearity of Gaussian fuzzy numbers and Tanaka’s minimum fuzziness criterion. Subsequently, historical data in Shanghai from March 2016 to February 2018 are extracted from the government database and divided into two parts, where the first half is statistically analyzed and used for formulating four seasonal fuzzy linear regression models in views of the special climate environment of Shanghai, and the second half is used for prediction to validate the performance of the proposed model. Furthermore, considering that there is beyond dispute that triangular fuzzy number is more prevalent and crucial in the field of fuzzy studies for years, plenty of comparisons between the models based on the two types of fuzzy numbers are carried out by means of the three measures including the membership degree, the fuzziness and the credibility. The results demonstrate the powerful effectiveness and efficiency of the fuzzy linear regression models for AQI prediction, and the superiority of Gaussian fuzzy numbers over triangular fuzzy numbers in presenting the relationships between the meteorological factors and AQI.
Keywords: air quality index prediction, fuzzy linear regression model, Gaussian fuzzy number, meteorological factors
DOI: 10.3233/JIFS-201222
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 6, pp. 10523-10547, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl