Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Khan, Asifa; * | Li, Jian Pinga | Haq, Amin Ula | Memon, Imranc | Patel, Sarosh H.b | ud. Din, Salaha
Affiliations: [a] School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, China | [b] School CS and Engineering, University of Bridgeport, USA | [c] Department of Computer Science, Bahria University, Karachi Campus, Pakistan
Correspondence: [*] Corresponding author. Asif Khan, School of Computer Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 611731, China. E-mail: asifkhan@uestc.edu.cn.
Abstract: On-time recovery and treatment of disease is always desirable. The use of Machine learning in health-care has grown very fast to diagnosis the different kinds of diseases in the past few years. In such a diagnosis, past and real-time data are playing very crucial role in using data mining techniques. Still, we are lacking in diagnosing the emotional mental disturbance accurately in the early stages. Thus,the initial diagnosis of depression expressively stances a great problem for both,researchers and clinical professionals. We have addressed the said problem in our proposed work using Pipeline Machine Learning technique where people based on emotional stages have been effectively classified into different groups in e-healthcare. To implement Hybrid classification, a well known machine learning multi-feature hybrid classifier is used by having the emotional stimulation in form of negative or positive people. In order to improve classification, an Ensemble Learning Algorithm is used which helps in choosing the more suitable features from the available genres-emotion data on online media. Additionally, Hold out validation method has been to split the dataset for training and testing of the predictive model. Further, performance evaluation measures have been applied to check the proposed system evaluation. This study is done on Genres-Tags MovieLens dataset. The experimental results show that applied ensemble method provides optimal classification performance by choosing the best subset of features. The said results proved the excellency of the proposed system which comes from the choosing most related features selected by the Integrated Learning algorithm. Additionally, suggested approach is used to accurately and effectively diagnose the depression in its early stage. It will help in recovery and treatment of depressed people. We conclude that use of the suggested method is highly suitable in all aspects of e-healthcare for depress stimulation.
Keywords: Socialnetworking, human physci, retrieval-ranking, trendprediction, informationretrieval, ML, datascience
DOI: 10.3233/JIFS-201069
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 1681-1694, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl