Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shi, Meihui | Shen, Derong; * | Kou, Yue | Nie, Tiezheng | Yu, Ge
Affiliations: College of Computer Science and Engineering, Northeastern University, Shenyang, China
Correspondence: [*] Corresponding author. Derong Shen, College of Computer Science and Engineering, Northeastern University, Shenyang, China. E-mail: shenderong@ise.neu.edu.cn.
Abstract: With the widespread of location-based social networks (LBSNs), the amount of check-in data grows rapidly, which helps to recommend the next point-of-interest (POI). Extracting sequential patterns from check-in data has become a meaningful way for next POI recommendation, since human movement exhibits sequential patterns in LBSNs. However, due to the check-ins’ sparsity problem, exploiting sequential patterns in next POI recommendation is a challenging issue, which makes the learned sequential patterns unreliable. Inspired by the fact that auxiliary information can be incorporated to alleviate this situation, in this paper, we model sequential transition based on both item-wise check-in sequences and region-wise spatial information. Besides, we propose an attention-aware recurrent neural network (ATTRNN) to learn the contribution of different time steps. Furthermore, considering users’ decision-making is influenced by public’s common preference to some extent, we design a novel framework, namely HSP (short for “Hybrid model based on Sequential feature mining and Public preference awareness”), to recommend POIs for a given user. We conduct a comprehensive performance evaluation for HSP on two real-world datasets. Experimental results demonstrate that compared to other state-of-the-art techniques, the proposed HSP achieves significantly improvements.
Keywords: Point-of-interest, recommendation, sequential pattern, public preference
DOI: 10.3233/JIFS-200465
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 3, pp. 4075-4090, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl