Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ji, Junqing | Kong, Xiaojia | Zhang, Yajing | Xu, Tongle; * | Zhang, Jing
Affiliations: School of Mechanical Engineering, ShandongUniversity of Technology, Zibo Shandong, China
Correspondence: [*] Corresponding author. Tongle Xu. Tel.: +8613964413228; E-mail: xutongle@sdut.edu.cn.
Abstract: The traditional blind source separation (BSS) algorithm is mainly used to deal with signal separation under the noiseless model, but it does not apply to data with the low signal to noise ratio (SNR). To solve the problem, an adaptive variable step size natural gradient BSS algorithm based on an improved wavelet threshold is proposed in this paper. Firstly, an improved wavelet threshold method is used to reduce the noise of the signal. Secondly, the wavelet coefficient layer with obvious periodicity is denoised using a morphological component analysis (MCA) algorithm, and the processed wavelet coefficients are recombined to obtain the ideal model. Thirdly, the recombined signal is pre-whitened, and a new separation matrix update formula of natural gradient algorithm is constructed by defining a new separation degree estimation function. Finally, the adaptive variable step size natural gradient blind source algorithm is used to separate the noise reduction signal. The results show that the algorithm can not only adaptively adjust the step size according to different signals, but also improve the convergence speed, stability and separation accuracy.
Keywords: Improved wavelet threshold function, noise reduction, blind source separation, natural gradient, adaptive variable step size
DOI: 10.3233/JIFS-200111
Journal: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 1, pp. 57-68, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl