Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: You, Shuang; * | Zhou, Yaping
Affiliations: School of Management, Management Science and Engineering, University of Science and Technology of China.
Correspondence: [*] Corresponding author. Mr. Shuang You, School of Management, Management Science and Engineering, University of Science and Technology of China, Anhui, Hefei, 230026, China. E-mail: yousustc@gmail.com.
Abstract: The traffic flow prediction using cellular automata (CA) is a trendy research domain that identified the potential of CA in modelling the traffic flow. CA is a technique, which utilizes the basic units for describing the overall behaviour of complicated systems. The CA model poses a benefit for defining the characteristics of traffic flow. This paper proposes a modified CA model to reveal the prediction of traffic flows at the signalised intersection. Based on the CA model, the traffic density and the average speed are computed for studying the characteristics and spatial evolution of traffic flow in signalised intersection. Moreover, a CA model with a self-organizing traffic signal system is devised by proposing a new optimization model for controlling the traffic rules. The Sunflower Cat Optimization (SCO) algorithm is employed for efficiently predicting traffic. The SCO is designed by integrating the Sunflower optimization algorithm (SFO) and Cat swarm optimization (CSO) algorithm. Also, the fitness function is devised, which helps to guide the control rules evaluated by traffic simulation using the CA model. Thus, the cellular automaton is optimized using the SCO algorithm for predicting the traffic flows. The proposed Sunflower Cat Optimization-based cellular automata (SCO-CA) outperformed other methods with minimal travel time, distance, average traffic density, and maximal average speed.
Keywords: Traffic flow prediction, signalized intersection, cellular automata, average speed, traffic density
DOI: 10.3233/JIFS-192099
Journal: Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 1547-1566, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl