Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mahajan, Rutal; * | Zaveri, Mukesh; 1
Affiliations: Department of Computer Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
Correspondence: [*] Corresponding author. Rutal Mahajan, Computer Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India. E-mail: rutal.mahajan@gmail.com.
Note: [1] E-mail: mazaveri@coed.svnit.ac.in.
Abstract: Human beings often use figurative language during communication to express their thoughts. Uncovering the meaning out of figurative language is not as simple as literal language. Humor identification is considered to be an important linguistic device for sentiment analysis of figurative text because it can often change the sentiments of the text. Moreover, during verbal communication people use facial expressions, gestures and other modalities to convey their feeling and to automatically understand the meaning out of figurative sentences using these modalities is part of computer vision and digital image processing. It is difficult for written sentences where facial expressions, gestures, other modalities, and emotions are absent and so it is an interesting question of research. Humor is a figurative device and a creative linguistic phenomenon. To understand the meaning of humor, we need to correctly understand the mood and emotions conveyed in the text, which is beyond the semantics of literal language communication. In this work, we have addressed these issues of understanding the emotions using affect-based information from text with various well established machine learning classifiers. We have exploited various affective content that inhibits the emotions and feeling of a writer such as emoticons, writing styles like punctuation, capitalization, sentiment words and so on. The proposed affect-based humor identification model is evaluated on the SemEval 2017 HashTagWars dataset and yelp review dataset with different types of the experimental configuration. This evaluates the effectiveness of the proposed humor identification model with different types of features.
Keywords: Humor identification, affective computing, natural language processing, machine learning
DOI: 10.3233/JIFS-191648
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 1, pp. 697-708, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl