Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Xue, Wei*; | Wang, Qi | Liu, Xiaona
Affiliations: College of Mechanical and Power Engineering, Jiangsu University of Science and Technology, Zhangjiagang, China
Correspondence: [*] Corresponding author. Wei Xue, College of Mechanical and Power Engineering, Jiangsu University of Science and Technology, Zhangjiagang, China. E-mail: weixuejkd@163.com.
Abstract: Although the Takagi-Sugeno-Kang (TSK) fuzzy classifier has achieved great success, how to further improve its classification performance and enhance its interpretability is still one of the most difficult challenges. Involved with the fusion of existing decision information and pre-known classification task, a newly proposed deep/hierarchical TSK fuzzy classifier (EDIPK-TSK) with interpretable fuzzy rules makes full use of the classification advantages of each base classifier to construct a multi-layer deep learning structure. This study first considers that the existing decision information of each training sub-block is sequentially projected into the subsequent sub-blocks for training. Undoubtedly, the existing decision information has played a guiding role in the current learning process to some extent. Simultaneously, the pre-known classification task is fused into the decision information for fine-tuning of it, which can significantly improve the efficiency of guidance and accelerate the fitting speed of the model. In each layer, the use of interpretable integration input space guarantees that EDIPK-TSK is not a black box. The proposed deep classifier can realize learning by using short fuzzy rules, which ensures the satisfactory interpretability of the classifier. The final experimental results also verify that EDIPK-TSK has strong classification advantages and interpretability.
Keywords: Fuzzy classifier, deep learning structure, existing decision information, interpretability, classification performance
DOI: 10.3233/JIFS-191579
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4, pp. 4941-4957, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl