Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rao, G. Madhukar | Ramesh, Dharavath; *
Affiliations: Department of Computer Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Jharkhand
Correspondence: [*] Corresponding author. Dharavath Ramesh, E-mail: drramesh@iitism.ac.in.
Abstract: In a real-time application such as traffic monitoring, it is required to process the enormous amount of data. Traffic prediction is essential for intelligent transportation systems (ITSs), traffic management authorities, and travelers. Traffic prediction has become a challenging task due to various non-linear temporal dynamics at different locations, complicated underlying spatial dependencies, and more extended step forecasting. To accommodate these instances, efficient visualization and data mining techniques are required to predict and analyze the massive amount of traffic big data. This paper presents a deep learning-based parallel convolutional neural network (Parallel-CNN) methodology to predict the traffic conditions of a specific region. The methodology of deep learning contains multiple processing layers and performs various computational strategies, which is used to learn representations of data with multilevel abstraction. The data has captured from the department of transportation; thus, the size of data is vast, and it can be analyzed to get the behavior of the traffic condition. The purpose of this paper is to monitor traffic behavior, which enables the user to make decisions to build the traffic-free cities. Experimental results show that the proposed methodology outperforms other existing methods such as KNN, CNN, and FIMT-DD.
Keywords: Convolutional neural network, deep learning, traffic data visualization, traffic prediction
DOI: 10.3233/JIFS-190601
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 2679-2691, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl