Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rubio, José de Jesús; * | Cruz, David Ricardo | Elias, Israel | Ochoa, Genaro | Balcazar, Ricardo | Aguilar, Arturo
Affiliations: Sección de Estudios de Posgrado e Investigación, ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, México D.F., 02250, México
Correspondence: [*] Corresponding author. José de Jesús Rubio, Sección de Estudios de Posgrado e Investigación,ESIME Azcapotzalco, Instituto Politécnico Nacional, Av. de las Granjas no. 682, Col. Santa Catarina, México D.F., 02250, México. E-mail: rubio.josedejesus@gmail.com.
Abstract: Recently, the Adaptive-Network-Based Fuzzy Inference System (ANFIS) is applied in many areas of knowledge, and there are multiple optimization algorithms for its learning. This work shows the design of a novel optimization algorithm for an ANFIS system that learns and classifies the behavior of brain signals between normal and abnormal. For this goal, different types of optimization algorithms for the learning of an ANFIS system are evaluated, such as the backpropagation, the mini-lots, and the Adam algorithm (adaptive moment estimation). As a result, utilizing the ANFIS with Adam and mini-lots provides the most accurate, fastest, and with least computational costs results.
Keywords: Adam algorithm, ANFIS system, mini-lots, classification of brain signals
DOI: 10.3233/JIFS-190207
Journal: Journal of Intelligent & Fuzzy Systems, vol. 37, no. 3, pp. 4033-4041, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl