Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Alzubi, Jafar A.a; * | Jain, Rachnab | Alzubi, Omarc | Thareja, Anujb | Upadhyay, Yashb
Affiliations: [a] Faculty of Engineering, Al-Balqa Applied University, Jordan | [b] Bharati Vidyapeeth’s College of Engineering, India | [c] Faculty of Information and Communication Technology, Al-Balqa Applied University, Jordan
Correspondence: [*] Corresponding author. Jafar A. Alzubi, Faculty of Engineering, Al-Balqa Applied University, Jordan. E-mail: j.zubi@bau.edu.jo.
Abstract: The availability of techniques for driver distraction detection has been difficult to put to use because of delays caused due to lag in inferencing the model. Distractions caused due to handheld devices have been major causes of traffic accidents as they affect the decision-making capabilities of the driver and gives them less time to react to difficult situations. Often drivers try to multitask which reduces their reaction time leading to accidents, which can easily be avoided if they had been attentive. As such, problems related to the driver’s negligence towards safety a possible solution is to monitor the driver and driving behavior and alerting them if they are distracted. In this paper, we propose a novel approach for detecting when a driver is distracted due to in hand electronic devices which is not only able to detect the distraction with high accuracy but also is energy and memory efficient. Our proposed compressed neural got an accuracy of 0.83 in comparison to 0.86 of heavyweight network.
Keywords: Machine learning, deep learning, convolutional neural network, CNN, distraction detection, model compression, pruning, quantization, deep compression
DOI: 10.3233/JIFS-189786
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 1253-1265, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl